Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We say that a function f from [0,1] to a Banach space X is increasing with respect to E ⊂ X* if x* ∘ f is increasing for every x* ∈ E. A function $f:[0,1]^m → X$ is separately increasing if it is increasing in each variable separately. We show that if X is a Banach space that does not contain any isomorphic copy of c₀ or such that X* is separable, then for every separately increasing function $f:[0,1]^m → X$ with respect to any norming subset there exists a separately increasing function $g:[0,1]^m → ℝ$ such that the sets of points of discontinuity of f and g coincide.
Słowa kluczowe
Kategorie tematyczne
Rocznik
Tom
Numer
Strony
61-76
Opis fizyczny
Daty
wydano
2014
Twórcy
autor
- Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ba62-1-7