PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 60 | 3 | 211-218
Tytuł artykułu

Wild Multidegrees of the Form (d,d₂,d₃) for Fixed d ≥ 3

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let d be any integer greater than or equal to 3. We show that the intersection of the set mdeg(Aut(ℂ³))∖ mdeg(Tame(ℂ³)) with {(d₁,d₂,d₃) ∈ (ℕ ₊)³: d = d₁ ≤ d₂≤ d₃} has infinitely many elements, where mdeg h = (deg h₁,...,deg hₙ) denotes the multidegree of a polynomial mapping h = (h₁,...,hₙ): ℂⁿ → ℂⁿ. In other words, we show that there are infinitely many wild multidegrees of the form (d,d₂,d₃), with fixed d ≥ 3 and d ≤ d₂ ≤ d₃, where a sequence (d₁,...,dₙ)∈ ℕ ⁿ is a wild multidegree if there is a polynomial automorphism F of ℂⁿ with mdeg F = (d₁,...,dₙ), and there is no tame automorphism of ℂⁿ with the same multidegree.
Słowa kluczowe
Twórcy
autor
  • Instytut Matematyki, Wydział Matematyki i Informatyki, Uniwersytet Jagielloński, Łojasiewicza 6, 30-348 Kraków, Poland
  • Instytut Informatyki, Wydział Matematyki i Informatyki, Uniwersytet Jagielloński, Łojasiewicza 6, 30-348 Kraków, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ba60-3-2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.