Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We give an equivalent expression for the K-functional associated to the pair of operator spaces (R,C) formed by the rows and columns respectively. This yields a description of the real interpolation spaces for the pair (Mₙ(R),Mₙ(C)) (uniformly over n). More generally, the same result is valid when Mₙ (or B(ℓ₂)) is replaced by any semi-finite von Neumann algebra. We prove a version of the non-commutative Khintchine inequalities (originally due to Lust-Piquard) that is valid for the Lorentz spaces $L_{p,q}(τ)$ associated to a non-commutative measure τ, simultaneously for the whole range 1 ≤ p,q < ∞, regardless of whether p < 2 or p > 2. Actually, the main novelty is the case p = 2, q ≠ 2. We also prove a certain simultaneous decomposition property for the operator norm and the Hilbert-Schmidt norm.
Słowa kluczowe
Kategorie tematyczne
Rocznik
Tom
Numer
Strony
237-259
Opis fizyczny
Daty
wydano
2011
Twórcy
autor
- Mathematics Department, Texas A&M University, College Station, TX 77843, U.S.A.
- Université Paris VI, Institut Mathématique de Jussieu, Analyse Fonctionnelle, Case 186, 75252 Paris Cedex 05, France
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ba59-3-6