EN
We study a correspondence L between some classes of functions holomorphic in the unit disc and functions holomorphic in the left halfplane. This correspondence is such that for every f and w ∈ ℍ, exp(L(f)(w)) = f(expw). In particular, we prove that the famous class S of univalent functions on the unit disc is homeomorphic via L to the class S(ℍ) of all univalent functions g on ℍ for which g(w+2πi) = g(w) + 2πi and $lim_{Re z→-∞}(g(w)-w) = 0$.