PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 55 | 2 | 105-122
Tytuł artykułu

Infinite Iterated Function Systems Depending on a Parameter

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is motivated by the problem of dependence of the Hausdorff dimension of the Julia-Lavaurs sets $J_{0,σ}$ for the map f₀(z) = z²+1/4 on the parameter~σ. Using homographies, we imitate the construction of the iterated function system (IFS) whose limit set is a subset of $J_{0,σ}$, given by Urbański and Zinsmeister. The closure of the limit set of our IFS ${ϕ^{n,k}_{σ,α}}$ is the closure of some family of circles, and if the parameter σ varies, then the behavior of the limit set is similar to the behavior of $J_{0,σ}$. The parameter α determines the diameter of the largest circle, and therefore the diameters of other circles. We prove that for all parameters α except possibly for a set without accumulation points, for all appropriate t > 1 the sum of the tth powers of the diameters of the images of the largest circle under the maps of the IFS depends on the parameter σ. This is the first step to verifying the conjectured dependence of the pressure and Hausdorff dimension on σ for our model and for $J_{0,σ}$.
Słowa kluczowe
Twórcy
  • Institute of Mathematics, Polish Academy of Sciences, ęniadeckich 8, 00-956 Warszawa, Poland
  • Faculty of Mathematics and Information Sciences, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warszawa, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ba55-2-2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.