Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
This paper is motivated by the problem of dependence of the Hausdorff dimension of the Julia-Lavaurs sets $J_{0,σ}$ for the map f₀(z) = z²+1/4 on the parameter~σ. Using homographies, we imitate the construction of the iterated function system (IFS) whose limit set is a subset of $J_{0,σ}$, given by Urbański and Zinsmeister. The closure of the limit set of our IFS ${ϕ^{n,k}_{σ,α}}$ is the closure of some family of circles, and if the parameter σ varies, then the behavior of the limit set is similar to the behavior of $J_{0,σ}$. The parameter α determines the diameter of the largest circle, and therefore the diameters of other circles. We prove that for all parameters α except possibly for a set without accumulation points, for all appropriate t > 1 the sum of the tth powers of the diameters of the images of the largest circle under the maps of the IFS depends on the parameter σ. This is the first step to verifying the conjectured dependence of the pressure and Hausdorff dimension on σ for our model and for $J_{0,σ}$.
Słowa kluczowe
Kategorie tematyczne
Rocznik
Tom
Numer
Strony
105-122
Opis fizyczny
Daty
wydano
2007
Twórcy
autor
- Institute of Mathematics, Polish Academy of Sciences, ęniadeckich 8, 00-956 Warszawa, Poland
- Faculty of Mathematics and Information Sciences, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warszawa, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ba55-2-2