PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 54 | 2 | 113-124
Tytuł artykułu

Schroeder-Bernstein Quintuples for Banach Spaces

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let X and Y be two Banach spaces, each isomorphic to a complemented subspace of the other. In 1996, W. T. Gowers solved the Schroeder-Bernstein Problem for Banach spaces by showing that X is not necessarily isomorphic to Y. In this paper, we obtain necessary and sufficient conditions on the quintuples (p,q,r,s,t) in ℕ for X to be isomorphic to Y whenever
⎧$X ~ X^p ⊕ Y^q$,

⎩ $Y^t ~ X^r ⊕ Y^s$.
Such quintuples are called Schroeder-Bernstein quintuples for Banach spaces and they yield a unification of the known decomposition methods in Banach spaces involving finite sums of X and Y, similar to Pełczyński's decomposition method. Inspired by this result, we also introduce the notion of Schroeder-Bernstein sextuples for Banach spaces and pose a conjecture which would complete their characterization.
Słowa kluczowe
Twórcy
  • Department of Mathematics - IME, University of São Paulo, São Paulo 05315-970, Brazil
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ba54-2-3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.