Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let X and Y be two Banach spaces, each isomorphic to a complemented subspace of the other. In 1996, W. T. Gowers solved the Schroeder-Bernstein Problem for Banach spaces by showing that X is not necessarily isomorphic to Y. In this paper, we obtain necessary and sufficient conditions on the quintuples (p,q,r,s,t) in ℕ for X to be isomorphic to Y whenever
⎧$X ~ X^p ⊕ Y^q$,
⎨
⎩ $Y^t ~ X^r ⊕ Y^s$.
Such quintuples are called Schroeder-Bernstein quintuples for Banach spaces and they yield a unification of the known decomposition methods in Banach spaces involving finite sums of X and Y, similar to Pełczyński's decomposition method. Inspired by this result, we also introduce the notion of Schroeder-Bernstein sextuples for Banach spaces and pose a conjecture which would complete their characterization.
⎧$X ~ X^p ⊕ Y^q$,
⎨
⎩ $Y^t ~ X^r ⊕ Y^s$.
Such quintuples are called Schroeder-Bernstein quintuples for Banach spaces and they yield a unification of the known decomposition methods in Banach spaces involving finite sums of X and Y, similar to Pełczyński's decomposition method. Inspired by this result, we also introduce the notion of Schroeder-Bernstein sextuples for Banach spaces and pose a conjecture which would complete their characterization.
Słowa kluczowe
Kategorie tematyczne
Rocznik
Tom
Numer
Strony
113-124
Opis fizyczny
Daty
wydano
2006
Twórcy
autor
- Department of Mathematics - IME, University of São Paulo, São Paulo 05315-970, Brazil
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ba54-2-3