EN
In recent years, convergence results for multivalued functions have been developed and used in several areas of applied mathematics: mathematical economics, optimal control, mechanics, etc. The aim of this note is to give a criterion of almost sure convergence for multivalued asymptotic martingales (amarts). For every separable Banach space B the fact that every L¹-bounded B-valued martingale converges a.s. in norm to an integrable B-valued random variable (r.v.) is equivalent to the Radon-Nikodym property [6]. In this paper we solve the problem of a.s. convergence of multivalued amarts by giving a topological characterization.