PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 92 | 2 | 99-122
Tytuł artykułu

The Lax-Phillips infinitesimal generator and the scattering matrix for automorphic functions

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study the infinitesimal generator of the Lax-Phillips semigroup of the automorphic scattering system defined on the Poincaré upper half-plane for SL₂(ℤ). We show that its spectrum consists only of the poles of the resolvent of the generator, and coincides with the poles of the scattering matrix, counted with multiplicities. Using this we construct an operator whose eigenvalues, counted with algebraic multiplicities (i.e. dimensions of generalized eigenspaces), are precisely the non-trivial zeros of the Riemann zeta function. We give an operator model on L²(ℝ) of this generator as explicit as possible. We obtain a condition equivalent to the Riemann hypothesis in terms of cyclic vectors for a weak resolvent of the scattering matrix.
Słowa kluczowe
Twórcy
  • Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ap92-2-1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.