EN
The aim of this paper is to investigate the class of compact Hermitian surfaces (M,g,J) admitting an action of the 2-torus T² by holomorphic isometries. We prove that if b₁(M) is even and (M,g,J) is locally conformally Kähler and χ(M) ≠ 0 then there exists an open and dense subset U ⊂ M such that $(U,g_{|U})$ is conformally equivalent to a 4-manifold which is almost Kähler in both orientations. We also prove that the class of Calabi Ricci flat Kähler metrics related with the real Monge-Ampère equation is a subclass of the class of Gibbons-Hawking Ricci flat self-dual metrics.