EN
Let 𝕂 denote ℝ or ℂ, n > 1. The Jacobian Conjecture can be formulated as follows: If F:𝕂ⁿ → 𝕂ⁿ is a polynomial map with a constant nonzero jacobian, then F is a polynomial automorphism. Although the Jacobian Conjecture is still unsolved even in the case n = 2, it is convenient to consider the so-called Generalized Jacobian Conjecture (for short (GJC)): the Jacobian Conjecture holds for every n>1. We present the reduction of (GJC) to the case of F of degree 3 and of symmetric homogeneous form and prove (JC) for maps having cubic linear form with symmetric F'(x), more precisely: polynomial maps of cubic linear form with symmetric F'(x) and constant nonzero jacobian are tame automorphisms.