Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let 𝓐 denote the class of all normalized analytic functions f (f(0) = 0 = f'(0)-1) in the open unit disc Δ. For 0 < λ ≤ 1, define
𝓤(λ) = {f ∈ 𝓐 : |(z/f(z))²f'(z) - 1| < λ, z ∈ Δ}
and
𝓟(2λ) = f ∈ 𝓐 : |(z/f(z))''| < 2λ, z ∈ Δ.cr Recently, the problem of finding the starlikeness of these classes has been considered by Obradović and Ponnusamy, and later by Obradović et al. In this paper, the authors consider the problem of finding the order of starlikeness and of convexity of 𝓤(λ) and 𝓟(2λ), respectively. In particular, for fi ∈ 𝓐 with f''(0) = 0, we find conditions on λ, β*(λ) and β(λ) so that 𝓤(λ) ⊊ 𝓢*(β*(λ)) and 𝓟(2λ) ⊊ 𝒦(β(λ)). Here, 𝓢*(β) and 𝒦(β) (β < 1) denote the classes of functions in 𝓐 that are starlike of order β and convex of order β, respectively. In addition to these results, we also provide a coefficient condition for functions to be in 𝒦(β). Finally, we propose a conjecture that each function f ∈ 𝓤(λ) with f''(0) = 0 is convex at least when 0 < λ ≤ 3 - 2√2.
𝓤(λ) = {f ∈ 𝓐 : |(z/f(z))²f'(z) - 1| < λ, z ∈ Δ}
and
𝓟(2λ) = f ∈ 𝓐 : |(z/f(z))''| < 2λ, z ∈ Δ.cr Recently, the problem of finding the starlikeness of these classes has been considered by Obradović and Ponnusamy, and later by Obradović et al. In this paper, the authors consider the problem of finding the order of starlikeness and of convexity of 𝓤(λ) and 𝓟(2λ), respectively. In particular, for fi ∈ 𝓐 with f''(0) = 0, we find conditions on λ, β*(λ) and β(λ) so that 𝓤(λ) ⊊ 𝓢*(β*(λ)) and 𝓟(2λ) ⊊ 𝒦(β(λ)). Here, 𝓢*(β) and 𝒦(β) (β < 1) denote the classes of functions in 𝓐 that are starlike of order β and convex of order β, respectively. In addition to these results, we also provide a coefficient condition for functions to be in 𝒦(β). Finally, we propose a conjecture that each function f ∈ 𝓤(λ) with f''(0) = 0 is convex at least when 0 < λ ≤ 3 - 2√2.
Słowa kluczowe
Kategorie tematyczne
- 30C45: Special classes of univalent and multivalent functions (starlike, convex, bounded rotation, etc.)
- 30A10: Inequalities in the complex domain
- 30C55: General theory of univalent and multivalent functions
- 30C80: Maximum principle; Schwarz's lemma, Lindel\"of principle, analogues and generalizations; subordination
Czasopismo
Rocznik
Tom
Numer
Strony
121-133
Opis fizyczny
Daty
wydano
2005
Twórcy
autor
- Department of Mathematics, Indian Institute of Technology, IIT-Madras, Chennai 600 036, India
autor
- Department of Mathematics, Indian Institute of Technology, IIT-Madras, Chennai- 600 036, India
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ap85-2-2