EN
This article continues the investigation of the analytic intersection algorithm from the perspective of deformation to the normal cone, carried out in the previous papers of the author [7, 8, 9]. The main theorem asserts that, given an analytic set V and a linear subspace S, every collection of hyperplanes, admissible with respect to an algebraic bicone B, realizes the generalized intersection index of V and S. This result is important because the conditions for a collection of hyperplanes to be admissible with respect to B are of geometric nature: it is not necessary to analyse the embedded components of the intersections involved, but only the supports of the intersections of B with successive hyperplanes.