EN
For complete Reinhardt pairs "compact set - domain" K ⊂ D in ℂⁿ, we prove Zahariuta's conjecture about the exact asymptotics
$ln d_s(A_K^D) ~ -((n!s)/τ(K,D))^{1/n}$, s → ∞,
for the Kolmogorov widths $d_s(A_K^D)$ of the compact set in C(K) consisting of all analytic functions in D with moduli not exceeding 1 in D, τ(K,D) being the condenser pluricapacity of K with respect to D.