Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 116 | 2 | 101-144

Tytuł artykułu

Asymptotic behaviour of Besov norms via wavelet type basic expansions

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
J. Bourgain, H. Brezis and P. Mironescu [in: J. L. Menaldi et al. (eds.), Optimal Control and Partial Differential Equations, IOS Press, Amsterdam, 2001, 439-455] proved the following asymptotic formula: if $Ω ⊂ ℝ^d$ is a smooth bounded domain, 1 ≤ p < ∞ and $f ∈ W^{1,p}(Ω)$, then
$lim_{s↗1} (1-s)∫_{Ω} ∫_{Ω} (|f(x)-f(y)|^p)/(||x-y||^{d+sp}) dxdy = K∫_{Ω} |∇f(x)|^p dx$,
where K is a constant depending only on p and d.
The double integral on the left-hand side of the above formula is an equivalent seminorm in the Besov space $B_p^{s,p}(Ω)$. The purpose of this paper is to obtain analogous asymptotic formulae for some other equivalent seminorms, defined using coefficients of the expansion of f with respect to a wavelet or wavelet type basis. We cover both the case of the usual (isotropic) Besov and Sobolev spaces, and the Besov and Sobolev spaces with dominating mixed smoothness.

Słowa kluczowe

Twórcy

autor
  • Institute of Mathematics, Polish Academy of Sciences, Branch in Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-ap3540-11-2015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.