Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let H(𝔹) denote the space of all holomorphic functions on the unit ball 𝔹⊂ ℂⁿ. Let φ be a holomorphic self-map of 𝔹 and u∈ H(𝔹). The weighted composition operator $uC_φ$ on H(𝔹) is defined by
$uC_φf(z) = u(z)f(φ(z))$.
We investigate the boundedness and compactness of $uC_φ$ induced by u and φ acting from Zygmund spaces to Bloch (or little Bloch) spaces in the unit ball.
$uC_φf(z) = u(z)f(φ(z))$.
We investigate the boundedness and compactness of $uC_φ$ induced by u and φ acting from Zygmund spaces to Bloch (or little Bloch) spaces in the unit ball.
Słowa kluczowe
Kategorie tematyczne
- 47B38: Operators on function spaces (general)
- 32H02: Holomorphic mappings, (holomorphic) embeddings and related questions
- 32A37: Other spaces of holomorphic functions (e.g. bounded mean oscillation (BMOA), vanishing mean oscillation (VMOA))
- 47B33: Composition operators
- 32A38: Algebras of holomorphic functions
Czasopismo
Rocznik
Tom
Numer
Strony
101-114
Opis fizyczny
Daty
wydano
2015
Twórcy
autor
- School of Mathematical Sciences, Tianjin Normal University, Tianjin 300387, P.R. China
autor
- School of Science, Jimei University, Xiamen, Fujian 361021, P.R. China
autor
- Department of Mathematics, Tianjin University, Tianjin 300072, P.R. China
- Center for Applied Mathematics, Tianjin University, Tianjin 300072, P.R. China
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ap114-2-1