Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We study the 2D magnetohydrodynamic (MHD) equations for a viscous incompressible resistive fluid, a system with the Navier-Stokes equations for the velocity field coupled with a convection-diffusion equation for the magnetic fields, in an arbitrary (bounded or unbounded) domain satisfying the Poincaré inequality with a large class of non-autonomous external forces. The existence of a weak solution to the problem is proved by using the Galerkin method. We then show the existence of a unique minimal pullback $D_σ$-attractor for the process associated to the problem. An upper bound on the fractal dimension of the pullback attractor is also given.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
129-154
Opis fizyczny
Daty
wydano
2015
Twórcy
autor
- Department of Mathematics, Hanoi University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
autor
- Foundation Sciences Faculty, Telecommunications University, 101 Mai Xuan Thuong, Nha Trang, Khanh Hoa, Vietnam
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ap113-2-2