Warianty tytułu
Języki publikacji
Abstrakty
Let Y be an open subset of a reduced compact complex space X such that X - Y is the support of an effective divisor D. If X is a surface and D is an effective Weil divisor, we give sufficient conditions so that Y is Stein. If X is of pure dimension d ≥ 1 and X - Y is the support of an effective Cartier divisor D, we show that Y is Stein if Y contains no compact curves, $H^i (Y,𝓞_Y) = 0$ for all i > 0, and for every point x₀ ∈ X-Y there is an n ∈ ℕ such that $Φ_{|nD|}^{-1}(Φ_{|nD|}(x₀)) ∩ Y$ is empty or has dimension 0, where $Φ_{|nD|}$ is the map from X to the projective space defined by a basis of $H⁰(X,𝓞_X(nD))$.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
43-60
Opis fizyczny
Daty
wydano
2015
Twórcy
autor
- 1 University Parkway, Building F, Office F2403, Division of Science, Governors State University, University Park, IL 60484, U.S.A.
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ap113-1-2