EN
Let V be a real algebraic manifold of positive dimension. The aim of this paper is to show that, for every integer b (arbitrarily large), there exists a trivial Nash family $𝒱 = {V_y}_{y ∈ R^b}$ of real algebraic manifolds such that V₀ = V, 𝒱 is an algebraic family of real algebraic manifolds over $y ∈ R^b∖{0}$ (possibly singular over y = 0) and 𝒱 is perfectly parametrized by $R^b$ in the sense that $V_y$ is birationally nonisomorphic to $V_z$ for every $y,z ∈ R^b$ with y ≠ z. A similar result continues to hold if V is a singular real algebraic set.