EN
This work deals with Feigenbaum's functional equation
⎧ $h(g(x)) = g^p(h(x))$,
⎨
⎩ g(0) = 1, -1 ≤ g(x) ≤ 1, x∈[-1,1]
where p ≥ 2 is an integer, $g^p$ is the p-fold iteration of g, and h is a strictly monotone odd continuous function on [-1,1] with h(0) = 0 and |h(x)| < |x| (x ∈ [-1,1], x ≠ 0). Using a constructive method, we discuss the existence of continuous unimodal even solutions of the above equation.