Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We study the first initial boundary value problem for the 2D non-autonomous g-Navier-Stokes equations in an arbitrary (bounded or unbounded) domain satisfying the Poincaré inequality. The existence of a weak solution to the problem is proved by using the Galerkin method. We then show the existence of a unique minimal finite-dimensional pullback $𝓓_σ$-attractor for the process associated to the problem with respect to a large class of non-autonomous forcing terms. Furthermore, when the force is time-independent and "small", the existence, uniqueness and global stability of a stationary solution are also studied.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
277-302
Opis fizyczny
Daty
wydano
2012
Twórcy
autor
- Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
autor
- Faculty of Information Technology, Le Qui Don Technical University, 100 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ap103-3-5