PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 100 | 3 | 203-222
Tytuł artykułu

Asymptotic properties of third order functional dynamic equations on time scales

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this paper is to study the asymptotic properties of nonoscillatory solutions of the third order nonlinear functional dynamic equation
$[p(t)[(r(t)x^{Δ}(t))^{Δ}]^{γ}]^{Δ} + q(t)f(x(τ(t))) = 0$, t ≥ t₀,
on a time scale 𝕋, where γ > 0 is a quotient of odd positive integers, and p, q, r and τ are positive right-dense continuous functions defined on 𝕋. We classify the nonoscillatory solutions into certain classes $C_{i}$, i = 0,1,2,3, according to the sign of the Δ-quasi-derivatives and obtain sufficient conditions in order that $C_{i} = ∅$. Also, we establish some sufficient conditions which ensure the property A of the solutions. Our results are new for third order dynamic equations and involve and improve some results previously obtained for differential and difference equations. Some examples are worked out to demonstrate the main results.
Słowa kluczowe
Twórcy
autor
  • Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland
autor
  • Department of Mathematics Skills, PY, King Saud University, Riyadh 11451, Saudi Arabia
  • Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ap100-3-1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.