Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this paper is to study the spectrum of the fourth order eigenvalue boundary value problem
⎧Δ²u = αu + βΔu in Ω,
⎨
⎩u = Δu = 0 on ∂Ω.
where (α,β) ∈ ℝ². We prove the existence of a first nontrivial curve of this spectrum and we give its variational characterization. Moreover we prove some properties of this curve, e.g., continuity, convexity, and asymptotic behavior. As an application, we study the non-resonance of solutions below the first principal eigencurve of the biharmonic problem
⎧Δ²u = f(u,x) + βΔu + h in Ω,
⎨
⎩Δu = u = 0 ∂Ω, where f: Ω × ℝ → ℝ is a Carathéodory function and h is a given function in L²(Ω).
⎧Δ²u = αu + βΔu in Ω,
⎨
⎩u = Δu = 0 on ∂Ω.
where (α,β) ∈ ℝ². We prove the existence of a first nontrivial curve of this spectrum and we give its variational characterization. Moreover we prove some properties of this curve, e.g., continuity, convexity, and asymptotic behavior. As an application, we study the non-resonance of solutions below the first principal eigencurve of the biharmonic problem
⎧Δ²u = f(u,x) + βΔu + h in Ω,
⎨
⎩Δu = u = 0 ∂Ω, where f: Ω × ℝ → ℝ is a Carathéodory function and h is a given function in L²(Ω).
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
267-275
Opis fizyczny
Daty
wydano
2014
Twórcy
autor
- Department of Mathematics, University Mohamed I, P.O. Box 717, Oujda 60000, Morocco
autor
- Department of Mathematics, University Mohamed I, P.O. Box 717, Oujda 60000, Morocco
autor
- Department of Mathematics, University Mohamed I, P.O. Box 717, Oujda 60000, Morocco
autor
- Department of Mathematics, University Mohamed I, P.O. Box 717, Oujda 60000, Morocco
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-am41-2-14