EN
Motivated by applications in queueing fluid models and ruin theory, we analyze the asymptotics of
$ℙ(sup_{t∈[0,T]} (∑_{i=1}^{n} λ_i B_{H_i}(t) - ct) > u)$,
where ${B_{H_i}(t): t ≥ 0}$, i = 1,...,n, are independent fractional Brownian motions with Hurst parameters $H_i ∈ (0,1]$ and λ₁,...,λₙ > 0. The asymptotics takes one of three different qualitative forms, depending on the value of $min_{i=1,...,n}H_i$.