Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 35 | 4 | 481-512

Tytuł artykułu

Linear independence of boundary traces of eigenfunctions of elliptic and Stokes operators and applications

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This paper is divided into two parts and focuses on the linear independence of boundary traces of eigenfunctions of boundary value problems. Part I deals with second-order elliptic operators, and Part II with Stokes (and Oseen) operators.
Part I: Let $λ_i$ be an eigenvalue of a second-order elliptic operator defined on an open, sufficiently smooth, bounded domain Ω in ℝⁿ, with Neumann homogeneous boundary conditions on Γ = tial Ω. Let ${φ_{ij}}^{ℓ_i}_{j=1}$ be the corresponding linearly independent (normalized) eigenfunctions in L₂(Ω), so that $ℓ_i$ is the geometric multiplicity of $λ_i$. We prove that the Dirichlet boundary traces ${φ_{ij}|_{Γ₁}}^{ℓ_i}_{j=1}$ are linearly independent in L₂(Γ₁). Here Γ₁ is an arbitrary open, connected portion of Γ, of positive surface measure. The same conclusion holds true if the setting {Neumann B.C., Dirichlet boundary traces} is replaced by the setting {Dirichlet B.C., Neumann boundary traces}. These results are motivated by boundary feedback stabilization problems for parabolic equations [L-T.2].
Part II: The same problem is posed for the Stokes operator with motivation coming from the boundary stabilization problems in [B-L-T.1]- [B-L-T.3] (with tangential boundary control), and [R] (with just boundary control), where we take Γ₁ = Γ.
The aforementioned property of boundary traces of eigenfunctions critically hinges on a unique continuation result from the boundary of corresponding over-determined problems. This is well known in the case of second-order elliptic operators of Part I; but needs to be established in the case of Stokes operators. A few proofs are given here.

Słowa kluczowe

Twórcy

  • Department of Mathematics, University of Virginia, Charlottesville, VA 22903, U.S.A.

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-am35-4-6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.