EN
We study local well-posedness of the Cauchy problem for the generalized Camassa-Holm equation $∂_{t}u - ∂³_{txx}u + 2κ∂_{x}u + ∂_{x}[g(u)/2] = γ(2∂_{x}u∂²_{xx}u + u∂³_{xxx}u)$ for the initial data u₀(x) in the Besov space $B^{s}_{p,r}(ℝ)$ with max(3/2,1 + 1/p) < s ≤ m and (p,r) ∈ [1,∞]², where g:ℝ → ℝ is a given $C^{m}$-function (m ≥ 4) with g(0)=g'(0)=0, and κ ≥ 0 and γ ∈ ℝ are fixed constants. Using estimates for the transport equation in the framework of Besov spaces, compactness arguments and Littlewood-Paley theory, we get a local well-posedness result.