Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this paper is to study the unilateral contact condition (Signorini problem) for polyconvex functionals with linear growth at infinity. We find the lower semicontinuous relaxation of the original functional (defined over a subset of the space of bounded variations BV(Ω)) and we prove the existence theorem. Moreover, we discuss the Winkler unilateral contact condition. As an application, we show a few examples of elastic-plastic potentials for finite displacements.
Słowa kluczowe
Kategorie tematyczne
- 49J45: Methods involving semicontinuity and convergence; relaxation
- 74B20: Nonlinear elasticity
- 47H04: Set-valued operators
- 26B30: Absolutely continuous functions, functions of bounded variation
- 74C15: Large-strain, rate-independent theories (including nonlinear plasticity)
- 46A11: Spaces determined by compactness or summability properties (nuclear spaces, Schwartz spaces, Montel spaces, etc.)
Czasopismo
Rocznik
Tom
Numer
Strony
443-464
Opis fizyczny
Daty
wydano
2005
Twórcy
autor
- Department of Applied Mathematics, Warsaw Agricultural University-SGGW, Nowoursynowska 159, 02-787 Warszawa, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-am32-4-6