Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
The theory of copulas provides a useful tool for modelling dependence in risk management. The goal of this paper is to describe the tail behaviour of bivariate copulas and its role in modelling extreme events. We say that a bivariate copula has a uniform lower tail expansion if near the origin it can be approximated by a homogeneous function L(u,v) of degree 1; and it is said to have a uniform upper tail expansion if the associated survival copula has a lower tail expansion. In this paper we (1) introduce the notion of the uniform tail expansion of a bivariate copula; (2) describe the main properties of the leading part L(u,v) like two-monotonicity or concavity; (3) determine the set of all possible leading parts L(u,v); (4) compute the leading parts of the uniform tail expansions for the most popular copulas like gaussian, archimedean or BEV; (5) apply uniform tail expansions in estimating the extreme risk of a portfolio consisting of long positions in risky assets.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
397-415
Opis fizyczny
Daty
wydano
2004
Twórcy
autor
- Institute of Mathematics, Warsaw University, Banacha 2, 02-097 Warszawa, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-am31-4-2