EN
We provide local and semilocal convergence results for Newton's method when used to solve generalized equations. Using Lipschitz as well as center-Lipschitz conditions on the operators involved instead of just Lipschitz conditions we show that our Newton-Kantorovich hypotheses are weaker than earlier sufficient conditions for the convergence of Newton's method. In the semilocal case we provide finer error bounds and a better information on the location of the solution. In the local case we can provide a larger convergence radius. Our results apply to generalized equations involving single as well as multivalued operators, which include variational inequalities, nonlinear complementarity problems and nonsmooth convex minimization problems.