PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2016 | 174 | 3 | 255-276
Tytuł artykułu

Average r-rank Artin conjecture

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let Γ ⊂ ℚ * be a finitely generated subgroup and let p be a prime such that the reduction group Γₚ is a well defined subgroup of the multiplicative group 𝔽ₚ*. We prove an asymptotic formula for the average of the number of primes p ≤ x for which [𝔽ₚ*:Γₚ] = m. The average is taken over all finitely generated subgroups $Γ =⟨a₁,...,a_{r}⟩⊂ ℚ *$, with $a_{i} ∈ ℤ$ and $a_{i} ≤ T_{i}$, with a range of uniformity $T_{i} > exp(4(log x loglog x)^{1/2})$ for every i = 1,...,r. We also prove an asymptotic formula for the mean square of the error terms in the asymptotic formula with a similar range of uniformity. The case of rank 1 and m = 1 corresponds to Artin's classical conjecture for primitive roots and was already considered by Stephens in 1969.
Słowa kluczowe
Twórcy
  • Dipartimento di Matematica, Università Roma Tre, Largo S. L. Murialdo, 1, I-00146 Roma, Italy
  • Department of Mathematics, Koc University, Rumelifeneri Yolu, 34450 Sarıyer-İstanbul, Turkey
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-aa8258-4-2016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.