Warianty tytułu
Języki publikacji
Abstrakty
Zeta-functions associated with modified Bessel functions are introduced as ordinary Dirichlet series whose coefficients are J-Bessel and K-Bessel functions. Integral representations, transformation formulas, a power series expansion involving the Riemann zeta-function and a recurrence formula are given. The inverse Laplace transform of Weber's first exponential integral is the basic tool to derive the integral representations. As an application, we give a new proof of the Fourier series expansion of the Poincaré series attached to SL(2,ℤ).
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
1-13
Opis fizyczny
Daty
wydano
2015
Twórcy
autor
- College of Engineering, Nihon University, 1 Nakagawara, Tokusada, Tamuramachi, Koriyama, Fukushima 963-8642, Japan
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-1-1