PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 169 | 1 | 1-27
Tytuł artykułu

The arithmetic of curves defined by iteration

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We show how the size of the Galois groups of iterates of a quadratic polynomial f can be parametrized by certain rational points on the curves Cₙ: y² = fⁿ(x) and their quadratic twists (here fⁿ denotes the nth iterate of f). To that end, we study the arithmetic of such curves over global and finite fields, translating key problems in the arithmetic of polynomial iteration into a geometric framework. This point of view has several dynamical applications. For instance, we establish a maximality theorem for the Galois groups of the fourth iterate of rational quadratic polynomials x² + c, using techniques in the theory of rational points on curves. Moreover, we show that the Hall-Lang conjecture on integral points of elliptic curves implies a Serre-type finite index result for these dynamical Galois groups, and we use conjectural bounds for the Mordell curves to predict the index in the still unknown case when f(x) = x² + 3. Finally, we provide evidence that these curves defined by iteration have geometrical significance, as we construct a family of curves whose rational points we completely determine and whose geometrically simple Jacobians have complex multiplication and positive rank.
Słowa kluczowe
Czasopismo
Rocznik
Tom
169
Numer
1
Strony
1-27
Opis fizyczny
Daty
wydano
2015
Twórcy
autor
  • Department of Mathematics, Brown University, Providence, RI 02912, U.S.A.
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-aa169-1-1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.