Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2015 | 168 | 1 | 31-70

Tytuł artykułu

On invariants of elliptic curves on average

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We prove several results regarding some invariants of elliptic curves on average over the family of all elliptic curves inside a box of sides A and B. As an example, let E be an elliptic curve defined over ℚ and p be a prime of good reduction for E. Let $e_E(p)$ be the exponent of the group of rational points of the reduction modulo p of E over the finite field $𝔽_p$. Let 𝓒 be the family of elliptic curves
$E_{a,b} : y^2 = x^3 + ax + b$,
where |a| ≤ A and |b| ≤ B. We prove that, for any c > 1 and k∈ ℕ,
$1/|𝓒| ∑_{E∈𝓒} ∑_{p≤x} e_E^k(p) = C_k li(x^{k+1}) + O((x^{k+1})/(logx)^c})$
as x → ∞, as long as $A,B > exp(c_1 (logx)^{1/2})$ and $AB > x(logx)^{4+2c}$, where $c_1$ is a suitable positive constant. Here $C_k$ is an explicit constant given in the paper which depends only on k, and $li(x) = ∫_{2}^x dt/log{t}$. We prove several similar results as corollaries to a general theorem. The method of the proof is capable of improving some of the known results with $A,B > x^ϵ$ and $AB > x(logx)^δ$ to $A,B > exp(c_1 (logx)^{1/2})$ and $AB > x(logx)^δ$.

Słowa kluczowe

Czasopismo

Rocznik

Tom

168

Numer

1

Strony

31-70

Opis fizyczny

Daty

wydano
2015

Twórcy

autor
  • Department of Mathematics and Computer Science, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
  • Department of Mathematics and Computer Science, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-aa168-1-3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.