PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 167 | 3 | 261-266
Tytuł artykułu

Consecutive primes in tuples

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In a stunning new advance towards the Prime k-Tuple Conjecture, Maynard and Tao have shown that if k is sufficiently large in terms of m, then for an admissible k-tuple $𝓗(x) = {gx + h_j}_{j=1}^k$ of linear forms in ℤ[x], the set $𝓗(n) = {gn + h_j}_{j=1}^k$ contains at least m primes for infinitely many n ∈ ℕ. In this note, we deduce that $𝓗(n) = {gn + h_j}_{j=1}^k$ contains at least m consecutive primes for infinitely many n ∈ ℕ. We answer an old question of Erdős and Turán by producing strings of m + 1 consecutive primes whose successive gaps $δ_1,...,δ_m$ form an increasing (resp. decreasing) sequence. We also show that such strings exist with $δ_{j-1} | δ_j$ for 2 ≤ j ≤ m. For any coprime integers a and D we find arbitrarily long strings of consecutive primes with bounded gaps in the congruence class a mod D.
Słowa kluczowe
Czasopismo
Rocznik
Tom
167
Numer
3
Strony
261-266
Opis fizyczny
Daty
wydano
2015
Twórcy
  • Department of Mathematics, University of Missouri, Columbia, MO 65211, U.S.A.
  • Department of Mathematics, University of Missouri, Columbia, MO 65211, U.S.A.
  • Department of Mathematics, University of Mississippi, University, MS 38677, U.S.A.
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-aa167-3-4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.