PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2014 | 166 | 2 | 189-200
Tytuł artykułu

Horizontal monotonicity of the modulus of the zeta function, L-functions, and related functions

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As usual, let s = σ + it. For any fixed value of t with |t| ≥ 8 and for σ < 0, we show that |ζ(s)| is strictly decreasing in σ, with the same result also holding for the related functions ξ of Riemann and η of Euler. The following inequality related to the monotonicity of all three functions is proved:
ℜ (η'(s)/η(s)) < ℜ (ζ'(s)/ζ(s)) < ℜ (ξ'(s)/ξ(s)).
It is also shown that extending the above monotonicity result for |ζ(s)|, |ξ(s)|, or |η(s)| from σ < 0 to σ < 1/2 is equivalent to the Riemann hypothesis. Similar monotonicity results will be established for all Dirichlet L-functions L(s,χ), where χ is any primitive Dirichlet character, as well as the corresponding ξ(s,χ) functions, together with the relation of this to the generalized Riemann hypothesis. Finally, these results will be interpreted in terms of the degree 1 elements of the Selberg class.
Słowa kluczowe
Twórcy
  • Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg Department, (POMI RAN), 27, Fontanka, St. Petersburg, 191023, Russia
autor
  • Department of Mathematics, University of North Carolina, Greensboro, NC 27402, U.S.A.
  • Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada T2N 1N4
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-aa166-2-4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.