PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2014 | 165 | 4 | 351-359
Tytuł artykułu

Optimal curves differing by a 5-isogeny

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For i = 0,1, let $E_i$ be the $X_i(N)$-optimal curve of an isogeny class 𝓒 of elliptic curves defined over ℚ of conductor N. Stein and Watkins conjectured that E₀ and E₁ differ by a 5-isogeny if and only if E₀ = X₀(11) and E₁ = X₁(11). In this paper, we show that this conjecture is true if N is square-free and is not divisible by 5. On the other hand, Hadano conjectured that for an elliptic curve E defined over ℚ with a rational point P of order 5, the 5-isogenous curve E' := E/⟨P⟩ has a rational point of order 5 again if and only if E' = X₀(11) and E = X₁(11). In the process of the proof of Stein and Watkins's conjecture, we show that Hadano's conjecture is not true.
Słowa kluczowe
Czasopismo
Rocznik
Tom
165
Numer
4
Strony
351-359
Opis fizyczny
Daty
wydano
2014
Twórcy
autor
  • Department of Mathematics, Seoul National University, Seoul, Korea
autor
  • Department of Mathematics, Seoul National University, Seoul, Korea
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-4-5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.