Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We prove several results concerning the existence of low-discrepancy point sets with respect to an arbitrary non-uniform measure μ on the d-dimensional unit cube. We improve a theorem of Beck, by showing that for any d ≥ 1, N ≥ 1, and any non-negative, normalized Borel measure μ on $[0,1]^d$ there exists a point set $x_1, ..., x_N ∈ [0,1]^d$ whose star-discrepancy with respect to μ is of order
$D_N*(x_1, ..., x_N; μ ) ≪ ((log N)^{(3d+1)/2})/N$.
For the proof we use a theorem of Banaszczyk concerning the balancing of vectors, which implies an upper bound for the linear discrepancy of hypergraphs. Furthermore, the theory of large deviation bounds for empirical processes indexed by sets is discussed, and we prove a numerically explicit upper bound for the inverse of the discrepancy for Vapnik-Chervonenkis classes. Finally, using a recent version of the Koksma-Hlawka inequality due to Brandolini, Colzani, Gigante and Travaglini, we show that our results imply the existence of cubature rules yielding fast convergence rates for the numerical integration of functions having discontinuities of a certain form.
$D_N*(x_1, ..., x_N; μ ) ≪ ((log N)^{(3d+1)/2})/N$.
For the proof we use a theorem of Banaszczyk concerning the balancing of vectors, which implies an upper bound for the linear discrepancy of hypergraphs. Furthermore, the theory of large deviation bounds for empirical processes indexed by sets is discussed, and we prove a numerically explicit upper bound for the inverse of the discrepancy for Vapnik-Chervonenkis classes. Finally, using a recent version of the Koksma-Hlawka inequality due to Brandolini, Colzani, Gigante and Travaglini, we show that our results imply the existence of cubature rules yielding fast convergence rates for the numerical integration of functions having discontinuities of a certain form.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
345-369
Opis fizyczny
Daty
wydano
2014
Twórcy
autor
- School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia
autor
- School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-aa163-4-4