EN
For a finite group G let 𝒦₂(G) denote the set of normal number fields (within ℂ) with Galois group G which are 2-ramified, that is, unramified outside {2,∞}. We describe the 2-groups G for which 𝒦₂(G) ≠ ∅, and determine the fields in 𝒦₂(G) for certain distinguished 2-groups G appearing (dihedral, semidihedral, modular and semimodular groups). Our approach is based on Fröhlich's theory of central field extensions, and makes use of ring class field constructions (complex multiplication).