PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 159 | 3 | 201-225
Tytuł artykułu

Sums of positive density subsets of the primes

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We show that if A and B are subsets of the primes with positive relative lower densities α and β, then the lower density of A+B in the natural numbers is at least $(1-o(1))α/(e^{γ} log log (1/β))$, which is asymptotically best possible. This improves results of Ramaré and Ruzsa and of Chipeniuk and Hamel. As in the latter work, the problem is reduced to a similar problem for subsets of $ℤ*_m$ using techniques of Green and Green-Tao. Concerning this new problem we show that, for any square-free m and any $A, B ⊆ ℤ*_m$ of densities α and β, the density of A+B in $ℤ_m$ is at least $(1-o(1))α/(e^{γ} log log (1/β))$, which is asymptotically best possible when m is a product of small primes. We also discuss an inverse question.
Słowa kluczowe
Twórcy
  • Department of Mathematics, University of Turku, 20014 Turku, Finland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-aa159-3-1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.