PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 159 | 1 | 63-87
Tytuł artykułu

On congruent primes and class numbers of imaginary quadratic fields

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider the problem of determining whether a given prime p is a congruent number. We present an easily computed criterion that allows us to conclude that certain primes for which congruency was previously undecided, are in fact not congruent. As a result, we get additional information on the possible sizes of Tate-Shafarevich groups of the associated elliptic curves.
We also present a related criterion for primes p such that $16$ divides the class number of the imaginary quadratic field ℚ(√-p). Both results are based on descent methods.
While we cannot show for either criterion individually that there are infinitely many primes that satisfy it nor that there are infinitely many that do not, we do exploit a slight difference between the two to conclude that at least one of the criteria is satisfied by infinitely many primes.
Słowa kluczowe
Twórcy
autor
  • Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
  • Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043, U.S.A.
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-aa159-1-4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.