Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2013 | 158 | 3 | 271-285

Tytuł artykułu

A quantitative aspect of non-unique factorizations: the Narkiewicz constants III

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Let K be an algebraic number field with non-trivial class group G and $𝓞_K$ be its ring of integers. For k ∈ ℕ and some real x ≥ 1, let $F_k(x)$ denote the number of non-zero principal ideals $a𝓞_K$ with norm bounded by x such that a has at most k distinct factorizations into irreducible elements. It is well known that $F_k(x)$ behaves for x → ∞ asymptotically like $x(log x)^{1-1/|G|} (log log x)^{𝖭_k (G)}$. We prove, among other results, that $𝖭₁(C_{n₁} ⊕ C_{n₂}) = n₁ + n₂$ for all integers n₁,n₂ with 1 < n₁|n₂.

Słowa kluczowe

Twórcy

autor
  • Center for Combinatorics, Nankai University, Tianjin 300071, P.R. China
  • College of Science, Civil Aviation University of China, Tianjin 300300, P.R. China
  • Center for Combinatorics, Nankai University, Tianjin 300071, P.R. China

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-aa158-3-6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.