Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We prove an inequality linking the growth of a generalized Wronskian of m p-adic power series to the growth of the ordinary Wronskian of these m power series. A consequence is that if the Wronskian of m entire p-adic functions is a non-zero polynomial, then all these functions are polynomials. As an application, we prove that if a linear differential equation with coefficients in ℂₚ[x] has a complete system of solutions meromorphic in all ℂₚ, then all the solutions of the differential equation are rational functions. This is also the case when the linear differential equation has coefficients in ℚ[x], and has, for an infinity of prime numbers p, a complete system of meromorphic solutions in a disc of ℂₚ with radius strictly greater than 1.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
61-78
Opis fizyczny
Daty
wydano
2013
Twórcy
autor
- 1, Allée Edouard Quincey, 94200, Ivry-sur-Seine, France
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-aa158-1-4