PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 157 | 4 | 357-364
Tytuł artykułu

Nonreciprocal algebraic numbers of small Mahler's measure

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We prove that there exist at least cd⁵ monic irreducible nonreciprocal polynomials with integer coefficients of degree at most d whose Mahler measures are smaller than 2, where c is some absolute positive constant. These polynomials are constructed as nonreciprocal divisors of some Newman hexanomials $1 + x^{r₁} + ⋯ + x^{r₅}$, where the integers 1 ≤ r₁ < ⋯ < r₅ ≤ d satisfy some restrictions including $2r_{j} < r_{j+1}$ for j = 1,2,3,4. This result improves the previous lower bound cd³ and seems to be closer to the correct value of this function in d than the best known upper bound which is exponential in d.
Słowa kluczowe
Twórcy
  • Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania
  • Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-aa157-4-3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.