PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 157 | 4 | 323-356
Tytuł artykułu

On the orthogonal symmetry of L-functions of a family of Hecke Grössencharacters

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The family of symmetric powers of an L-function associated with an elliptic curve with complex multiplication has received much attention from algebraic, automorphic and p-adic points of view. Here we examine one explicit such family from the perspectives of classical analytic number theory and random matrix theory, especially focusing on evidence for the symmetry type of the family. In particular, we investigate the values at the central point and give evidence that this family can be modeled by ensembles of orthogonal matrices. We prove an asymptotic formula with power savings for the average of these L-values, which reproduces, by a completely different method, an asymptotic formula proven by Greenberg and Villegas-Zagier. We give an upper bound for the second moment which is conjecturally too large by just one logarithm. We also give an explicit conjecture for the second moment of this family, with power savings. Finally, we compute the one-level density for this family with a test function whose Fourier transform has limited support. It is known by the work of Villegas-Zagier that the subset of these L-functions from our family which have even functional equations never vanish; we show to what extent this result is reflected by our analytic results.
Słowa kluczowe
Twórcy
autor
  • American Institute of Mathematics, 360 Portage Ave., Palo Alto, CA 94306, U.S.A.
  • School of Mathematics, University of Bristol, Bristol, BS8 1TW, United Kingdom
autor
  • School of Mathematics, University of Bristol, Bristol, BS8 1TW, United Kingdom
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-aa157-4-2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.