EN
1. Introduction
Random Integral Equations play a significant role in characterizing of many biological and engineering problems [4,5,6,7].
We present here new existence theorems for a class of integral equations with advancing argument. Our method is based on the notion of a measure of noncompactness in Banach spaces and the fixed point theorem of Darbo type. We shall deal with random integral equation with advancing argument
$x(t,ω) = h(t,ω) + ∫^{t+δ(t)}₀ k(t,τ,ω)f(τ,x_τ(ω))dτ$, (t,ω) ∈ R⁺ × Ω, (1)
where
(i) (Ω,A,P) is a complete probability space,
(ii) x = x(t,ω) denotes an unknown random function defined for t ∈ R⁺ and ω ∈ Ω,
(iii) δ is a nonnegative function from R⁺ into R⁺,
(iv) xₜ(ω) denotes the restriction of the function x(t,ω) to the interval [0,t+δ(t)], t>0, with x₀(ω) = x(0,ω) ∈ L²(Ω,A,P).