EN
In this paper we prove a theorem for the existence of pseudo-solutions to the Cauchy problem, x' = f(t,x), x(0) = x₀ in Banach spaces. The function f will be assumed Pettis-integrable, but this assumption is not sufficient for the existence of solutions. We impose a weak compactness type condition expressed in terms of measures of weak noncompactness. We show that under some additionally assumptions our solutions are, in fact, weak solutions or even strong solutions. Thus, our theorem is an essential generalization of previous results.