ArticleOriginal scientific text

Title

Volume mean values of subtemperatures

Authors 1

Affiliations

  1. Department of Mathematics, University of Canterbury, Christchurch, New Zealand

Abstract

Several authors have found the characteristic mean value formula for temperatures over heat spheres. Those who derived a corresponding formula over heat balls have all chosen different mean values. In this paper we discuss an infinity of possible means over heat balls, and show that, in the wider context of subtemperatures, some are more desirable than others.

Bibliography

  1. A. F. Beardon, Integral means of subharmonic functions, Proc. Cambridge Philos. Soc. 69 (1971), 151-152.
  2. W. Fulks, A mean value theorem for the heat equation, Proc. Amer. Math. Soc. 17 (1966), 6-11.
  3. L. L. Helms, Introduction to Potential Theory, Wiley, New York, 1969.
  4. L. P. Kuptsov, Mean property for the heat-conduction equation, Mat. Zametki 29 (1981), 211-223 (in Russian); English transl.: Math. Notes 29 (1981), 110-116.
  5. B. Pini, Maggioranti e minoranti delle soluzioni delle equazioni paraboliche, Ann. Mat. Pura Appl. 37 (1954), 249-264.
  6. T. Radó, Subharmonic Functions, Springer, Berlin, 1937.
  7. E. P. Smyrnélis, Sur les moyennes des fonctions paraboliques, Bull. Sci. Math. (2) 93 (1969), 163-173.
  8. N. A. Watson, A theory of subtemperatures in several variables, Proc. London Math. Soc. (3) 26 (1973), 385-417.
  9. N. A. Watson, Green functions, potentials, and the Dirichlet problem for the heat equation, ibid. 33 (1976), 251-298.
  10. N. A. Watson, A convexity theorem for local mean values of subtemperatures, Bull. London Math. Soc. 22 (1990), 245-252.
  11. N. A. Watson, Nevanlinna's first fundamental theorem for subtemperatures, Math. Scand. 73 (1993), 49-64.
Pages:
253-258
Main language of publication
English
Published
2000
Exact and natural sciences