ArticleOriginal scientific text

Title

Representation theory of two-dimensionalbrauer graph rings

Authors 1

Affiliations

  1. Mathematisches Institut B/3, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany

Abstract

We consider a class of two-dimensional non-commutative Cohen-Macaulay rings to which a Brauer graph, that is, a finite graph endowed with a cyclic ordering of edges at any vertex, can be associated in a natural way. Some orders Λ over a two-dimensional regular local ring are of this type. They arise, e.g., as certain blocks of Hecke algebras over the completion of [q,q-1] at (p,q-1) for some rational prime p. For such orders Λ, a class of indecomposable maximal Cohen-Macaulay modules (see introduction) has been determined by K. W. Roggenkamp. We prove that this list of indecomposables of Λ is complete.

Keywords

Brauer graph, order, Cohen-Macaulay, Auslander-Reiten quiver

Bibliography

  1. M. Auslander, Isolated singularities and existence of almost split sequences, in: Representation Theory II, Groups and Orders, Lecture Notes in Math. 1178, Springer, 1986, 194-242.
  2. M. Auslander, Functors and morphisms determined by objects, in: Proc. Conf. Representation Theory (Philadelphia, 1976), Dekker, 1978, 1-244.
  3. M. Auslander and I. Reiten, Almost Split Sequences for Cohen-Macaulay Modules, Math. Ann. 277 (1987), 345-349.
  4. M. Auslander, I. Reiten and S. Smalο, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1995.
  5. C. W. Curtis and I. Reiner, Methods of Representation Theory, I, II, Wiley,1987.
  6. P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, in: Lecture Notes in Math. 831, Springer, 1980, 1-71.
  7. J. A. Green, Walking around the Brauer tree, J. Austral. Math. Soc. 17 (1974), 197-213.
  8. D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184.
  9. G. Lusztig, On quantum groups, J. Algebra 131 (1990), 466-475.
  10. J. C. McConnell, Localization in enveloping rings, J. London Math. Soc. 43 (1968), 421-428.
  11. J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Wiley, 1987.
  12. I. Reiner, Maximal Orders, London, 1975.
  13. I. Reiten and M. Van den Bergh, Two-dimensional tame and maximal orders of finite representation type, Mem. Amer. Math. Soc. 408 (1989).
  14. C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
  15. K. W. Roggenkamp, Indecomposable Representations of Orders, in: Topics in Algebra, Part I: Rings and Representations of Algebras, Banach Center Publ. 26, PWN, Warszawa, 1990, 449-491.
  16. K. W. Roggenkamp, Cohen-Macaulay modules over two-dimensional graph orders, Colloq. Math. 82 (2000), 25-48.
  17. K. W. Roggenkamp, Blocks with cyclic defect of Hecke orders of Coxeter groups, preprint.
  18. K. W. Roggenkamp and W. Rump, Orders in non-semisimple algebras, Comm. Algebra 27 (1999), 5267-5301.
  19. W. Rump, Green walks in a hypergraph, Colloq. Math. 78 (1998), 133-147.
  20. W. Rump, Non-commutative Cohen-Macaulay rings, manuscript, Stuttgart, 1999.
  21. W. Rump, Non-commutative regular rings, manuscript, Stuttgart, 1999.
  22. W. Rump, *-modules, tilting, and almost abelian categories, Comm. Algebra, to appear.
  23. J.-P. Serre, Algèbre Locale Multiplicités, Lecture Notes in Math. 11, Berlin 1975.
  24. D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon & Breach, New York, 1992.
  25. Y. Yoshino, Cohen-Macaulay Modules over Cohen-Macaulay Rings, London Math. Soc. Lecture Note Ser. 146, Cambridge Univ. Press, 1990.
Pages:
239-251
Main language of publication
English
Received
1999-03-30
Accepted
2000-02-01
Published
2000
Exact and natural sciences