ArticleOriginal scientific text

Title

Roots of Nakayama and Auslander-Reiten translations

Authors 1, 2

Affiliations

  1. Fachbereich Mathematik-Informatik, Universität-GH Paderborn, D-33095 Paderborn, Germany
  2. Faculty of Mathematics and Informatics, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland

Abstract

We discuss the roots of the Nakayama and Auslander-Reiten translations in the derived category of coherent sheaves over a weighted projective line. As an application we derive some new results on the structure of selfinjective algebras of canonical type.

Bibliography

  1. I. Assem, J. Nehring and A. Skowroński, Domestic trivial extensions of simply connected algebras, Tsukuba J. Math. 13 (1989), 31-72.
  2. K. Bongartz, Critical simply connected algebras, Manuscripta Math. 46 (1984), 117-136.
  3. H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 3rd ed., Springer, 1972.
  4. W. Geigle and H. Lenzing, A class of weighted projective curves arising in representation theory of finite dimensional algebras, in: Singularities, Representations of Algebras, and Vector Bundles, Lecture Notes in Math. 1273, Springer, 1987, 265-297.
  5. D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Ser. 119, Cambridge Univ. Press, 1988.
  6. D. Happel and D. Vossieck, Minimal algebras of infinite representation type with preprojective component, Manuscripta Math. 42 (1983), 221-243.
  7. D. Hughes and J. Waschbüsch, Trivial extensions of tilted algebras, Proc. London Math. Soc. 46 (1983), 347-364.
  8. H. Lenzing and H. Meltzer, Sheaves on a weighted projective line of genus one and representations of tubular algebras, in: Representations of Algebras, CMS Conf. Proc. 14, Amer. Math. Soc., 1993, 313-337.
  9. H. Lenzing and H. Meltzer, The automorphism group of the derived category for a weighted projective line, Comm. Algebra 28 (2000), 1685-1700.
  10. H. Lenzing and A. Skowroński, On selfinjective algebras of Euclidean type, Colloq. Math. 79 (1999), 71-76.
  11. H. Lenzing and A. Skowroński, Selfinjective algebras of wild canonical type, preprint, 1999.
  12. J. Nehring and A. Skowroński, Polynomial growth trivial extensions of simply connected algebras, Fund. Math. 132 (1989), 117-134.
  13. Y. Ohnuki, K. Takeda and K. Yamagata, Automorphisms of repetitive algebras, J. Algebra, to appear.
  14. C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
  15. A. Skowroński, Selfinjective algebras of polynomial growth, Math. Ann. 285 (1989), 177-199.
  16. A. Skowroński and K. Yamagata, Socle deformations of selfinjective algebras, Proc. London Math. Soc. 72 (1996), 545-566.
  17. A. Skowroński and K. Yamagata, Galois coverings of selfinjective algebras by repetitive algebras, Trans. Amer. Math. Soc. 351 (1999), 715-734.
Pages:
209-230
Main language of publication
English
Received
1999-07-27
Accepted
2000-01-20
Published
2000
Exact and natural sciences