ArticleOriginal scientific text

Title

Perturbation of analytic operators and temporal regularity of discrete heat kernels

Authors 1

Affiliations

  1. Département de Mathématiques, Université de Cergy-Pontoise, 2, avenue Adolphe Chauvin, 95302 Cergy-Pontoise, France

Abstract

In analogy to the analyticity condition AetACt-1, t > 0, for a continuous time semigroup (etA)t0, a bounded operator T is called analytic if the discrete time semigroup (Tn)n satisfies (T-I)TnCn-1, n ∈ ℕ. We generalize O. Nevanlinna's characterization of powerbounded and analytic operators T to the following perturbation result: if S is a perturbation of T such that R(λ0,T)-R(λ0,S) is small enough for some λ0ϱ(T)ϱ(S), then the type ω of the semigroup (et(S-I)) also controls the analyticity of S in the sense that (S-I)SnC(ω+n-1)eωn, n ∈ ℕ. As an application we generalize and give a simple proof of a result by M. Christ on the temporal regularity of random walks T on graphs of polynomial volume growth. On arbitrary spaces Ω of at most exponential volume growth we obtain this regularity for any powerbounded and analytic operator T on L2(Ω) with a heat kernel satisfying Gaussian upper bounds.

Bibliography

  1. [BB] M. T. Barlow and R. F. Bass, Random walks on graphical Sierpiński carpets, in preparation.
  2. [C] M. Christ, Temporal regularity for random walk on discrete nilpotent groups, J. Fourier Anal. Appl., Kahane Special Issue (1995), 141-151.
  3. [C-SC] T. Coulhon et L. Saloff-Coste, Puissances d'un opérateur régularisant, Ann. Inst. H. Poincaré Probab. Statist. 26 (1990), 419-436.
  4. [H-SC] W. Hebisch and L. Saloff-Coste, Gaussian estimates for Markov chains and random walks on graphs, Ann. Probab. 21 (1993), 673-709.
  5. [J] O. D. Jones, Transition probabilities for the simple random walk on the Sierpiński graph, Stochastic Process. Appl. 61 (1996), 45-69.
  6. [N1] O. Nevanlinna, Convergence of Iterations for Linear Equations, Birkhäuser, Basel, 1993.
  7. [N2] O. Nevanlinna, On the growth of the resolvent operators for power bounded operators, in: Linear Operators, J. Janas, F. H. Szafraniec and J. Zemánek (eds.), Banach Center Publ. 38, Inst. Math., Polish Acad. Sci., 1997, 247-264.
  8. [P] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci. 44, Springer, 1983.
Pages:
189-201
Main language of publication
English
Received
2000-01-11
Published
2000
Exact and natural sciences