ArticleOriginal scientific text

Title

Some spectral results on L2(Hn) related to the action of U(p,q)

Authors 1, 1

Affiliations

  1. Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina

Abstract

Let Hn be the (2n+1)-dimensional Heisenberg group, let p,q be two non-negative integers satisfying p+q=n and let G be the semidirect product of U(p,q) and Hn. So L2(Hn) has a natural structure of G-module. We obtain a decomposition of L2(Hn) as a direct integral of irreducible representations of G. On the other hand, we give an explicit description of the joint spectrum σ(L,iT) in L2(Hn) where L=j=1p(Xj2+Yj2)-j=p+1n(Xj2+Yj2), and where {X1,Y1,...,Xn,Yn,T} denotes the standard basis of the Lie algebra of Hn. Finally, we obtain a spectral characterization of the bounded operators on L2(Hn) that commute with the action of G.

Bibliography

  1. [B-W] A. Borel and N. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Ann. of Math. Stud. 94, Princeton Univ. Press, 1980.
  2. [F-1] G. Folland, Harmonic Analysis in Phase Space, Ann. of Math. Stud. 122, Princeton Univ. Press, 1989.
  3. [F-2] G. Folland, Hermite distributions associated to the group O(p,q), Proc. Amer. Math. Soc. 126 (1998), 1751-1763.
  4. [G-S] T. Godoy and L. Saal, L2 spectral theory on the Heisenberg group associated to the action of U(p,q), Pacific J. Math. 193 (2000), 327-353.
  5. [H-T] R. Howe and E. Tan, Non-Abelian Harmonic Analysis, Springer, 1992.
  6. [S] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993.
  7. [St-1] R. Strichartz, Harmonic analysis as spectral theory of Laplacians, J. Funct. Anal. 87 (1989), 51-149.
  8. [St-2] R. Strichartz, Lp harmonic analysis and Radon transforms on the Heisenberg group, ibid. 96 (1991), 350-406.
  9. [T] S. Thangavelu, Harmonic Analysis on the Heisenberg Group, Progr. Math. 159, Birkhäuser, 1998.
Pages:
177-187
Main language of publication
English
Received
1999-04-28
Accepted
1999-12-20
Published
2000
Exact and natural sciences