ArticleOriginal scientific textSome spectral results on
Title
Some spectral results on related to the action of U(p,q)
Authors 1, 1
Affiliations
- Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
Abstract
Let be the (2n+1)-dimensional Heisenberg group, let p,q be two non-negative integers satisfying p+q=n and let G be the semidirect product of U(p,q) and . So has a natural structure of G-module. We obtain a decomposition of as a direct integral of irreducible representations of G. On the other hand, we give an explicit description of the joint spectrum σ(L,iT) in where , and where denotes the standard basis of the Lie algebra of . Finally, we obtain a spectral characterization of the bounded operators on that commute with the action of G.
Bibliography
- [B-W] A. Borel and N. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Ann. of Math. Stud. 94, Princeton Univ. Press, 1980.
- [F-1] G. Folland, Harmonic Analysis in Phase Space, Ann. of Math. Stud. 122, Princeton Univ. Press, 1989.
- [F-2] G. Folland, Hermite distributions associated to the group O(p,q), Proc. Amer. Math. Soc. 126 (1998), 1751-1763.
- [G-S] T. Godoy and L. Saal,
spectral theory on the Heisenberg group associated to the action of U(p,q), Pacific J. Math. 193 (2000), 327-353. - [H-T] R. Howe and E. Tan, Non-Abelian Harmonic Analysis, Springer, 1992.
- [S] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993.
- [St-1] R. Strichartz, Harmonic analysis as spectral theory of Laplacians, J. Funct. Anal. 87 (1989), 51-149.
- [St-2] R. Strichartz,
harmonic analysis and Radon transforms on the Heisenberg group, ibid. 96 (1991), 350-406. - [T] S. Thangavelu, Harmonic Analysis on the Heisenberg Group, Progr. Math. 159, Birkhäuser, 1998.